Nabble has removed Mailing-list integration.
Posts created here DO NOT GET SENT TO THE MAILING LIST.
Mailing-list emails DO NOT GET POSTED TO THE FORUM.
So basically the Forum is now out of date, we are looking into migrating the history.

For now you should send emails, people will see them, discuss@lists.openscad.org.

I made a thing - unionRound / fillet union

classic Classic list List threaded Threaded
3 messages Options
Reply | Threaded
Open this post in threaded view
|

I made a thing - unionRound / fillet union

TLC123
This post was updated on .
One of the most common request is boolean operations with fillet/chamfer/rounding/radius/smoothing . Most option so far has been unsatisfactory or glacially slow.
 
Enabled by fast convex + convex minkowski sum. Thanks whoever implemented that.

    Unions of simple operands has a general FAST solution in all cases where the joint area is convex

    For non convex operands, a simple masking system enable us to isolate out only local convex areas to process.
    Masks are in practice a common volume that both operands are first intersected by.


Though not a complete solution a good part of common cases can be filleted. (se limitations.)

With an exploit of fast convex + convex minkowski and the Theorem: Given any collection of convex sets, their intersection is itself a convex set.
The following became possible:
 



   
     ////////////////////////////////////////////////////////
    /*
    unionRound() 1.0 Module by Torleif Ceder - TLC123 late summer 2021
     Pretty fast Union with radius, But limited to a subset of cases
    Usage
     unionRound( radius , detail , epsilon )
        {
         YourObject();
         YourObject();
        }
    limitations:
     0. Only really fast when boolean operands are convex,
            Minkowski is fast in that case.
     1. Boolean operands may be concave but can only touch
            in a single convex area
     2. Radius is of elliptic type and is only approximate r
            were operand intersect at perpendicular angle.
    */
    ////////////////////////////////////////////////////////
    // Demo code
     unionRound(1.5, 5) {
     cube([10,10,2],true);
     rotate([20,-10,0])cylinder(5,1,1,$fn=12);
    }
    // end of demo code
    //
    module unionRound(r, detail = 5) {
        epsilon = 1e-6;
        children(0);
        children(1);
        step = 90 / detail;
      for (i = [0:  detail-1]) {
            {
                x = r - sin(i * step ) * r;
                y = r - cos(i * step ) * r;
                xi = r - sin((i * step + step)  ) * r;
                yi = r - cos((i * step + step)  ) * r;
                color(rands(0, 1, 3, i))
                hull() {
                    intersection() {
                        // shell(epsilon)
                        clad(x) children(0);
                        // shell(epsilon)
                        clad(y) children(1);
                    }
                    intersection() {
                        // shell(epsilon)
                        clad(xi) children(0);
                        // shell(epsilon)
                        clad(yi) children(1);
                    }
                }
            }
        }
    }
    // unionRound helper expand by r
    module clad(r) {
        minkowski() {
            children();
            //        icosphere(r,2);
             isosphere(r,70);
        }
    }
    // unionRound helper
    module shell(r) {
        difference() {
            clad(r) children();
            children();
        }
    }
 /*    
    // The following is a sphere with some equidistant properties.
    // Not strictly necessary

    Kogan, Jonathan (2017)
    "A New Computationally Efficient Method for Spacing n Points on a
    Sphere,"
    Rose-Hulman Undergraduate Mathematics Journal:
    Vol. 18 : Iss. 2 , Article 5.
    Available at:
    https://scholar.rose-hulman.edu/rhumj/vol18/iss2/5 */

    function sphericalcoordinate(x,y)=  [cos(x  )*cos(y  ), sin(x  )*cos(y  ), sin(y  )];
    function NX(n,x)=
    let(toDeg=57.2958,PI=acos(-1)/toDeg,
    start=(-1.+1./(n-1.)),increment=(2.-2./(n-1.))/(n-1.) )
    [ for (j= [0:n-1])let (s=start+j*increment )
    sphericalcoordinate(   s*x*toDeg,  PI/2.* sign(s)*(1.-sqrt(1.-abs(s)))*toDeg)];
    function generatepoints(n)= NX(n,0.1+1.2*n);
    module isosphere(r,detail){
    a= generatepoints(detail);
    scale(r)hull()polyhedron(a,[[for(i=[0:len(a)-1])i]]);
    }


 
[on Youtube] 
[on GitHub]

[on Thingiverse]


[on OpenSCAD Snippet Pad]


[on r /OpenSCAD]
 
Reply | Threaded
Open this post in threaded view
|

Re: I made a thing - unionRound / fillet union

MichaelAtOz
Administrator
I haven't tried it, but it looks nice, thanks.

a. Don't you want
      module unionRound(r, detail = 5, epsilon = 1e-6) {
   

b. The Forum is no longer linked to the Mailing-list. You should email a link to this post for people to see it.

I think you should not post here any more.

OpenSCAD Admin - email* me if you need anything, or if I've done something stupid...
* on the Forum, click on my MichaelAtOz label, there is a link to email me.

Unless specifically shown otherwise above, my contribution is in the Public Domain;
to the extent possible under law, I have waived all copyright and related or neighbouring rights to this work.
Obviously inclusion of works of previous authors is not included in the above.
Reply | Threaded
Open this post in threaded view
|

Re: I made a thing - unionRound / fillet union

TLC123
Hi, thanks for the feedback. It warms my heart.

a.
Yeah you're right. There are a bunch of function i held back. I tried to hold code lean for the first publishing to bolster understanding.
Shell module is really not needed in the base case. Hence neither epsilon.
I found a great deal of neat tricks with minkowski over epsilon slivers.

b. Mailing list are at best like telegraphing a crutch via amish buggy. I will not use it to chat.

I will cross post this finding and links in many places. Updates follow on github I realize this forum has no guarantee to be archived but a few people read it none the less. I leave a trace and crums to the new place when its decided on. Please send my love (and findings ) to the good people in the spruce submarine  :).

Best of luck.