# Dodecahedron - Intersecting Tetrahedra - with Dodecahedron

3 messages
Open this post in threaded view
|
Report Content as Inappropriate

## Dodecahedron - Intersecting Tetrahedra - with Dodecahedron

 From: https://trmm.net/TetrahedronI got the code for interlocking Tetrahedron (in color): " \$fn=30; v=[         [+1,+1,+1],         [+1,-1,-1],         [-1,+1,-1],         [-1,-1,+1], ]; colors=["red","green","blue","yellow","purple"]; module tetrahedron(len,thick) {         for(a=[0:2])                 for(b=[a+1:3])                         hull() {                                 translate(v[a]*len) sphere(r=thick);                                 translate(v[b]*len) sphere(r=thick);                         } } for(i=[0:4]) {         color(colors[i])         rotate([0,-atan(sqrt(5)/2-0.5), i*360/5])         tetrahedron(20,2); } " And elsewhere, I discovered it can also be done by connecting the vertices of a dodecahedron. What I'd like to do is add the dodecahedron (transparent) with the interlocking tetrahedrons to be able to show just how the vertices connect. I tried doing it in Blender, but, I can't color the edges. Without being able to color the edges, it's all black and there's no clear way to determine easily which edges identify each tetrahedron (as is shown here). Anyone? He also mentions adding the code: "rotate(\$t*360)" but is unclear as to where in the initial code that would go, to work. Last line?  Maybe. Thanx
Open this post in threaded view
|
Report Content as Inappropriate

## Re: Dodecahedron - Intersecting Tetrahedra - with Dodecahedron

 Figured out, at least for this code, the rotation: " \$fn=30; v=[         [+1,+1,+1],         [+1,-1,-1],         [-1,+1,-1],         [-1,-1,+1], ]; colors=["red","green","blue","yellow","purple"]; module tetrahedron(len,thick) {         for(a=[0:2])                 for(b=[a+1:3])                         hull() {                                 translate(v[a]*len) sphere(r=thick);                                 translate(v[b]*len) sphere(r=thick);                         } } for(i=[0:4]) {         color(colors[i])         rotate([0,-atan(sqrt(5)/2-0.5), i*360/5])         rotate([0,0,\$t*360]) translate([0,0,0]) tetrahedron(20,.25);  // (diameter, stick size) } "